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ABSTRACT

The equation of state for liquid mixtures is fundamental problem of
the statistical theory. This problem can be solved by the approximation of
the pair additivity of the intermolecular potential @up(r) by the method of
integral equations for binary distribution functions gap(r).

This approach allowed to determine satisfactory the thermophysical
properties both model and real liquid systems only if their densities are
small or moderate. For dense liquid mixtures, new integral equations have
be deduced. For this purpose, the Lebowitz-Percus method is applied as a
rule. In this method the chosen generation functional (GF) is expanded in
series with respect to deviation of the local density from its average value.
Choice of the GF is obtained a priori .

In this report, the physical principle for the choice GF is given. It is
shown that the scaled transformation of the coordinate part of phase
space of one component of the mixture corresponds to virtual variation of
the local density of this component. This result was applied to develop the
procedures of the forming GF, which can be used in the system integral
equations for gup(r). On basis of developed theory, the equation of state for
dense liquid mixtures was obtained. This equation of state is modification
of known equations proposed by Tait and Marnaghan. It was also shown
that system of integral equations for 8ap(r) coincide with Percus-Yevick

system of equations or hypernetted chains equations system.

KEY WORDS: activity; equation of state; generation functional; liquid;

mixture; pressure.



1. INTRODUCTION

In the last time scientists take much attention to investigation of
different equilibrium properties of liquid mixtures by a methods of
integral equations.

In article [1] it was presented such the system of integral equations.

If integral equations for conditional distribution functions are deduced,

usual it was used the Lebowitz-Percus method [2). This method is based
on the Taylor-series expansion of the GF CD[F la(f’wa), WQ(F)] with respect
to variations in position of the particle, which creats the field Y, (T). GF

Q[Fla(flwa), \ua(f)] depends on external field V,(f) and first order

conditional distribution function Fla(F‘\pa) for o.-component of a mixture.
Unfortunately, the physical principle is absent for selection of the
GF. Usually it is selected a priori intuitively, as this was performed in
Percus-Yevick (PY) or in hypernetted-chain (HNC) approximation. In
addition if GF is selected, it is impossible to indicate the criterion of the
applicability of the obtained integral equations for radial distribution

functions (RDF) gup(r). These difficulties are associated with unknown
character of the FIO‘(F[\V(X) from vy (f). That is why it is necessary to find
simple approximation of the V. (f)dependence from density p,=N,/V,

where o is one from components of a mixture, N, is total number of the

a-type particles and V is mixture volume.

2. THE METHOD OF THE LOCAL SCALED TRANSFORMATION OF
PHASE SPACE

We used the method of the local scaled transformation of the
coordinate spase of the o- mixture component. In accordance with [3.4] it

is felt that scaled transformation with scaled factor
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which is depended from the space argument T, corresponds to virtual

variation of the density of the a-component, that is pJ(f) - p (). V, and

po in (1) are the volume and density of the reference state; V,, p,-are

analogical values of our system after of the a-type particle coordinates of

the scaled transformation.

Really, after such transformation the coordinate r* and the first

order distribution function F(f)which is determined in large canonical

ensemble as
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where E is statistical sum
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N20 N, k=1Vk ! k=1
Z, = exp(yy / kgT)— is activity, y,-is chemical potential of the k-mixture
component, (N;+N,+..+N_=N), Dy(f, .5y ) = exp(=Uy / k5 T),

Uy, 5y) = (1/2)2 Z(paiﬁ_(rij) -is  potential energy, Pyp -is  pair
o,p i<j ! :
Ny
potential energy, {df]\';k } = deik , n is number of a mixture components. In
i=1

formula (3) ai are the following
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Fy*(f*,1,") - is pair distribution function. It cannot be too highly stressed
that the expression (3) is deduced in approximation about smooth non-

homogeneity with rejection of the terms containing Vk (). According

to [5]
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we deduced for F*[y,(F")f]
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where P,-is partial pressure of the a-component, P*- is partial pressure

of the a-component in the external field, which is created by additional
particle of the o-component in point 7*

It was shown [6] that for system with pair-additional intermolcular
energy P = P/. Since for dense liquid mixtures and condensed gases far

from stability boundary the partial susceptibility is much letter than 1,

that is kyT(0p, / aua)T,uk,v / py<<1,the expression (9) are rewritten as
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Therefore it is thought, that the scaled transformation of the coordinate

space of o- mixture component with scaled factor y (r) corresponds to

the virtual variation of the local density of the o -component.

3. CHOICE OF THE GENERATING FUNCTIONAL
We want to deduce the system of integral equations for RDF of a

liquid mixtures.
Let us consider the possibility of use above mentioned conclusion

for choice of the GF. According to [7] the GF is analitical function from
u= y,(F)/ kT and v= F*|y,)- F{(F0), that is

D[u, v]= Zaijuiuj (11)

Lj

where a; are constants. If we the consider only the special case when
compressibility is small and

®u,v]= ay + aju+ ayv,
and we decompose of it in Taylor-series expansion with respect to

deviations F]“(f’\ua)— F(7/0), we deduce
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In (12), the terms which contain high order derivative from y,(T), are
ignored. This implies that we ignore the multiparticle correlations, which
are essential near critical point.

If we use the functional determination of the direct correlative

function (DCF) Cup(r) and system of Ornstein-Zernice (OZ) equations,

then we deduce next expression for DCF from (12)
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The next conclusion follows immediately from (13), that choice of GF
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®fu, v] is equivalent to choice of the DCF.
So far as we differentiate the ®[u,v] in point W)= 0, ®[u,v](11)
may be rewrite as
Dlu, v]= UZ ai,ui. (14)
i=1 ‘
To take into account the next terms of expansion (12), we use Kummer

transformation [8], according to which
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where A= v), aju, and ug-is subsidiary function. It satisfies to next
i

condition: |
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In purturbation theory, any model potential is considered as function u.
Nevertheless, we consider, as aﬁ alternative to function u, analogous
potential which was scaled transformed. It can not be too highly stressed
that the condition (16) is true if scaled factor X, (F) is close to 1, for

smooth potential function. Because the expression

\)Z ai,(ui— uﬁ))converges more quickly than expression (14) if the
i

condition (16) is satisfied, therefore we chose as the GF @ the tail of the
expression (15), which is quickly convergent. Therefore the GF we deduce
in such form
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We shall indicate new two variant of the GF , which are a consequence of

the our theory. By analogy to functionals which were used in the PY

theory and in the HNC [7] we built the GF
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and
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If x, >, the GF (18) becomes similar to the PY ones, and GF (19)
becomes similar to the HNC ones.
4. THE SYSTEM OF INTEGRAL EQUATIONS FOR RDF OF LIQUID
MIXTURES

The system of the integral equations for RDF can result from the
equation (17) by the Lebowitz-Percus method [2], if we take into account

only linear terms this equation:
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From this system of equations (20) it follows that DCF has the form,

which satisfies the equation (21)
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with operator

M;(Xo) = exp{(yo~ DFV,}- 1. (22)
Next systems of the integral equations for RDF gup(r) can be deduced by
method of functional differentiation of the GF (18) and (19)
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and
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if the DCF has form
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and

Cop(M)= Cop(Aa) = 8op(m)— 1= In gy (D + [005(Xal)— @]/ kT (26)
consequently.

The system of the integral equations (23) and (24) are transformed in PY
and HNC systems if y,—> and p,—0, lim Qap(Xar)=0, limC,p(y.r)=0,
consequently. In addition, the system of integral equations (23) is
transformed in the (20) ones if x,—0 and temperature is high.

5. THE EQUATION OF STATE FOR LIQUID MIXTURES

The equation of state for dense liquid mixtures can be obtained

from equations (20) with DCF (21), if y,—0 and differential operator I\A/IF
(22) has form

N (0)= expEi¥p)- 1= X (- 1>i@f—)' . (27)
=1 1!

And also we use the theorem of compressibility (28)
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and the virial theorem (8).

Let us consider the equation of state, which can be obtained if we
are limited in expression (27) only by some N first terms:

1. N=1 M, = -V, .
Then expression (21) can be rewritten as

TV:Cop(r)= = 8o (NEV)P (1) / kT, (29)
Integrating the equation (29) on volume V and neglecting by the surface
terms we obtain

1
kT
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If we substitude the expression (30) in the theorem of virial (8) we obtain

the equation of state in form
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This equation of state is similar to Marnaghan equation (32)

{@1} - 2B (32)
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where parameteres B and A are equal

B=- pk, T/ 2, A=1/2.

In equation (32) parameter A is constant and parameter B is function
from the temperature and the concentration. The results of the P-V-T
date experimental investigations of liquid n-hexane+n-dodecane mixtures

[10] agree closely with the equation (32), moreover it was shown that A is

equal to 0.16+-0.09 and B is decreasing function from the temperature.
N=2 M, = (fV,)*/ 2- iV, .

If repulsing potential of the intetmolecular interaction is characterized by

index m, that is (paB(r)~rm', then equation of state takes the form (32) with

parameter A= 3/(m+3) and B=(A-1)pkgT. If m < 30 the theoretical value
of parameter A agree closely with its experimental value.
If N is arbitrary value in expression (27), for parameter A’ we

obtain:

N . N .
A_lzl{z(m+1— 1)!/2(1:2)!} a4
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and parameter B retains the form (33).

If index of repulsion is different for molecule of the type o and ,p,

then equation of state takes the form (35)
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If inequality (36)
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takes place, then equation of state takes the form (37)
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where
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where 6,3-is the symbol of Kronecker, m-index of repulsing potential of
reference system.
CONCLUSION

Assuming that isothermal compressibility is small for liquid
mixtures it is found the simple approximate relation, deseribing the
change of the intermolecular potential with variation of the local density
of a-component.

If isothermal compressibility is large for liquid mixtures, obtained
system of integral equations for RDF is transformed in PY and HNC
equations.

The equation of state, obtained on the basis of the developed theory
has a functional form which is similar to the Marnaghan equation of
state, if the index m of the repulsing intermolecular potential is common
for molecules of o and P type. In opposite case, the equation of state is

more complicated.
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